Aspirin and omega-3 fatty acid status interact in the prevention of cardiovascular diseases in Framingham Heart Study.

Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States; Cardiology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States. Electronic address: robert_block@urmc.rochester.edu. Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, United States. Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States. Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, United States. The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States. Departments of Pediatrics, Human Nutrition, and Chemistry, Dell Pediatric Research Institute, University of Texas at Austin, United States. Department of Internal Medicine, Sanford School of Medicine, University of South Dakota; and OmegaQuant Analytics, LLC, Sioux Falls, SD, United States. Department of Mathematics and Statistics, Dordt University, Sioux Center, Iowa, United States.

Prostaglandins, leukotrienes, and essential fatty acids. 2021;:102283

Abstract

BACKGROUND The roles of omega-3 (n3) fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] and low-dose aspirin in the primary prevention of ischemic cardiovascular disease (CVD) are controversial. Since omega-3 (n3) fatty acids and aspirin affect cyclooxygenase activity in platelets, there could be a clinically-relevant effect of aspirin combined with a particular n3 fatty acid level present in each individual. METHODS RBC EPA+DHA, arachidonic acid (AA) and docosapentaenoic acid (DPA) were measured in 2500 participants without known CVD in the Framingham Heart Study. We then tested for interactions with reported aspirin use (1004 reported use and 1494 did not) on CVD outcomes. The median follow-up was 7.2 years. RESULTS Having RBC EPA+DHA in the second quintile (4.2-4.9% of total fatty acids) was associated with significantly reduced risk for future CVD events (relative to the first quintile, <4.2%) in those who did not take aspirin (HR 0.54 (0.30, 0.98)), but in those reporting aspirin use, risk was significantly increased (HR 2.16 (1.19, 3.92)) in this quintile. This interaction remained significant when adjusting for confounders. Significant interactions were also present for coronary heart disease and stroke outcomes using the same quintiles. Similar findings were present for EPA and DHA alone but not for DPA and AA. CONCLUSIONS There is a complex interaction between aspirin use and RBC EPA+DHA levels on CVD outcomes. This suggests that aspirin use may be beneficial in one omega-3 environment but harmful in another, implying that a personalized approach to both aspirin use and omega-3 supplementation may be needed.

Methodological quality

Publication Type : Clinical Trial

Metadata